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AbstmcL a binary Sullivan fluid mixlure is 
studied by means of a dynamics approach. Analylical study of the two-phase coexistence 
system show that the order of the wetting transition depends mainly on the strength of 
the fluid-fluid interanion and that lhe subswale does not play an essential mle. The 
results on three-phase mexistence systems obtained by Hauge Uirough landau mean 
field theory are recwered by our treatment and some new results are obtained. A 
thin-thick transition might occur in such a short-range force system; a phase diagram 
of the wetting Vansition consmcted fmm Ule WO components of wall-fluid patenrial is 
obtained. lbe method employed in the present paper could be used to investigate the 
wetting behaviour in systems with more components. 

l b e  M l U E  of the wetting wansition 

1. Introduction 

The wetting transition has received much attention in the last few decades [l]. The 
first question to be answered in thii field is whether the transition is of first or 
second order. The wetting transition in a simple fluid system has already been 
thoroughly studied by many methods [I] including the dynamical approach. The 
dynamical approach has turned out to be very powerful in studying the order of 
the wetting transition in the Sullivan model [2] and its generalization '[3-6]. This 
approach is based on a simulation of the wetting problem in simple fluids in which 
a classical particle move8 in a one-dimensional space [3]. The wetting properties 
in binary mixture fluids have been studied by many authors using wrious methods 
[7-91. It is natural to ask whether the dynamical approach could be used to discuss 
the wetting properties in fluid mixtures. Ding and Hauge have proved [lo] that in a 
van der Waals framework [U], the wetting problem of the Sullivan model [2] for n- 
component mixtures can still be thought of as a dynamical problem where a classical 
particle moves in an n-dimensional hilly landscape. In this article, we discuss the 
Sullivan modcl [2] for a binary mixture system, ie., both fluid-fluid and wall-fluid 
potentials have exponential form with the same force range. The density profile of a 
fluid with a €ree interface (i.e., no wall exists) is represented as a trajectory between 
two peaks of the dynamical potential, which is called a refeence vajectory (RT). When 
a substrate is introduced, the fluid density profile Will change and the motion orbit of 
the classical particle will deviate from the W-this is called the expansion vajecrory 
(ET). If the wall force is weak enough, the deviation of the ET from the W (take R 
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to denote this deviation in the text) may be so small that we can regard it as a small 
quantity and the ET can effectively be expanded in h near the m. As we have seen 
in the simple fluid case, however, h may not be a small quantity when the trajectory 
passes near a peak of poteutial. Fortunately, the potential itself can be expanded 
and a local lrajeclory (LT) of the particle in this region could be obtained. Joining 
ET and LT smoothly in a certain position (denoted by MO in figure 1) may yield a 
whole physical lrajecloty (PT) which represents a partial wetting state of the system. 
As for the complete wetting, the PT is constructed by connecting the RT and a piece 
of the LT passing through the peak of the wetting phase. This procedure is called the 
mjectoty expansion method. 

~ 0 , O l  m, 

Figure L Dstiibution of two peak of polenrial (8) in the ase of m-phase  mexilence. 

In our discussion, we take h, (deviation h at MO) as the order parameter for 
investigating the order of the wetting transition. In  the complete wetting state, h, = 
0, the particle must visit the peak of the wetting phase (denoted as X in section 2) 
before it goes to the peak of the bulk phase (denoted as y). In the partial wetting 
state, howcver, h,  + 0, the particle goes to peak y directly without passing through 
peak A. Thus a continuous change of h, from zero to non-zero indicates a second- 
order wetting transition, and a jump in h, corresponds to a wetting transition of 
fist order. As the wall-fluid force varies, the PT may change its shape (keeping its 
endpoint at peak 7, of course). The minimum principle of free energy will determine 
whether a partial or complete wetting state is more favourable. When both have 
an equal amount of free energy, a wetting transition may occur. In this way the 
separatrix of first-order and second-order transitions in the parameter space can be 
calculated, and the phase diagram of the wetting transition is also obtained. 

In this paper we adopt the notation used before [lo], where the attractive potential 
between molecules i and j is x,, (integrated over lateral dimensions), and that due 
to the wall and on the ith component of the fluid is a,. The Sullivan model takes 
the form 

with constant aij  and E * .  In the following, the repeated indices imply a summation 
over indices 1 and 2, and a single subscript i always indicates number 1 or 2 The 
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surface free energy reads 

v [ { p ; ( x ) } l =  Jm If~[{fi(z))l-  b; - @i(z)I/'i(z) + PI 
0 

where p i ( x )  is the fluid density of the ith component and { p i ( x ) }  denotes the 
totality of pi(.) ( i  = 1,2), fH is the Helmholtz free energy density for hard core 
systems, + j  is the chemical potential of the ith component, and p is the equilibrium 
pressure. The equilibrium state should be determined by 6 u / 6 p i  = 0, which leads 
to a set of second-order differential equations: 

d 2 p H i / d z 2  = + H ~ ( z )  - - a i j f j ( z ) .  (3) 

In the associated dynamical problem, 21 is regarded as time 2. Introducing dimen- 
sionless quantities [lo], we have 

A . .  = a . . / k B T  M ;  = +; /k ,T  
(4) 

1 = x <; = +Hi/k,T 13 If 

T, = p,/k,T r = p/k,T E; = Ei/k ,T .  

Equation (3) is then transformed into 

d2ci/dt2 = ci - M~ - A i j ( a r H / a t , ) .  (5) 

In the general symmetry case A, ,  = A,, = A , A , ,  = A?, = B = kA,  M I  = 
M ,  = M .  The symmetry matrix with elements A i j  can be diagonalized using a real 
orthogonal matrix uij: ui jA jku lk  = Ai6,, (no summation over i in this and the next 
expression!) Letting 7ij = Ar1'26jj and T . .  ' I  = rikukj ,  we get Z j A j k T , ,  = 6,, 
where 

With mi = qj ( t j  - M j ) ,  equation (5) can be transformed into Newtonian motion 
equations describing a classical particle with unit mass and coordinates (m, ,  m,) 
moving in a conservative potential U:  

d z m ; / d t 2  = -dU /dmi  (7) 

where U = rH - T - ;mimi. If an ideal lattice gas model is chosen for the hard 
core system, we have 

U = I n ( l + &  + e t * )  - r - f ( m :  + m:) (8) 

where 
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The initial conditions are 

where ei = 2Tij E j  is the ith component of wall-fluid potential. The final conditions 
are 

h , ( m )  = 0 (10) 
which means an auxiliary limitation: mi(co) = coordinates corresponding to the bulk 
phase far away from the wall. 

The free energy (2) of the system can then be transformed into the form 
tm U 1 _-  mi mi dl.  - + -mj(0)mi(o)  + 

kB T 2 
The above prclimfflaly formulation enables us to study the corresponding wetting 
properties systematically. 

The rest of this present paper is organized as follows: section 2 investigates the 
wetting behaviour of a system in a two-phase coexistence state. Section 3 studies the 
three-phase coexistence system. The conclusions and some further discussions are 
included in the last section. 

2. lko-phase coexistence system 

If (1 - k)/2 < 1 / A  < ( 1  + k)/8 and k < 1 (area I1 in [lo]), the dynamical potential 
has two peaks y and A. By choosing a certain value for M in equation (S),  one may 
obtain a two-phase (y and A) coexistence state. The phase y is the one with lower 
density and A is the one with higher density as shown in figure 1, where (yo,O) and 
(Xo,O) are their coordinates respectively. We define phase X as the intruding phase 
and y as the bulk phase, then the RT is along the ml axis directed to peak y. We 
can expand the ET in h ( l )  as follows: 

m , ( 9  = a o ( l )  + a , ( t )h ( t )  + a 2 ( l ) h 2 ( l )  + ". 
mz(Q = h ( 6  ('2) 
i ( 1 )  = b l ( t ) h ( l ) + b z ( t ) h 2 ( t ) +  . . .  

where a o ( t )  and bo( l )  are components of the m. Substituting (12) into both dynam- 
ical equations (7) and the first integral 

f m f  + fm: + U(m,,m,) = o  (13) 
gives the following set of equations: 

?ao + Uoo = 0 
io(Q1 + a l b l )  + ~ 1 U l o  = 0 

I . 2  

(146) 

(144 

(I@) 

(144 

1 ~(61 + a1b1)2 + c i o ( i 2  + a l b ,  + 2~251) + f b f  + a2Ulo + $a:U2, + ;Uo2 = 0 

6 ,  + b; + U,, = 0 

6, + 3b,b,  + a l U l 2  = 0 
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etc, where U,,, U,,, . . . are coefficients in the expansion of the dynamical potential 
U around the m. 

Equations (14) define the ET for given initial conditions. Notice that equation (14a) 
is simply the equation for the m. 

Near peak A, the LT takes the form 

ml = A, + C,e-=' + C2eat m2 = C3e-b* + ,,eb* (15) 
with the coefficients Cl,C2,C, and C, to be determined, and u , b  the curvatures 
of the dynamical potential along two principal axes at peak A, determined by the 
expansion of U near the peak A: 

U(ml,m2) = -p 1 2  ( m ,  - A , ) ' -  $b2m:. 

As long as the deviation of the ET from the m is small enough, we may find some 
position ml = MO where both trajectory expansion (12) and the potential expansion 
near the peak A are valid. Then we may connect them smoothly there and obtain 
the PT. Suppose that the particle passes this position at a moment 1,; the connecting 
conditions are 

r+z;(t ,-0)=v+z;(t ,+0) mi(t,-O)=mi(to+O). (16) 

Appendix A supplies a discussion of equations (14) and coefficients in equation (15), 
and gives the following equations: 

(1 + u ) p O e " " h ~  - (A,  - e , )  - (1 - u) (uz  - Ao)e-a'o = 0 

(1 + b)(b-  b~)eb"ho - 2be2 + (1 - b ) ( b +  by)e-b'Oho = 0 
(17) 

where the superscript 0 indicates a quantity at moment io ,  and po is a positive 
constant. These expressions will be used to study the order of the wetting transition. 

Letting e, > 0 be fixed (the case of e2 < 0 can be treated in the same way), 
taking h, 2 0 as a small quantity and using the second expression in equation (17), 
we get 

Substituting this into the first equation in (17) gives 

where 

and the coefficients of h;lb, hi-"/' terms are all negative. 
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4 A. LI 

0 

Figure 2 (U) A second-order Vansition takes place at e, = XO for the use of a < 2 b ,  
(b) A tint-order Vansition takes place at e; for the QY of a > 2b.  

(i) If 2b 2 a (including b > a; thus the dominant term of el -A ,  is of order h;lb), 
el - A, -+ 0 when h, -t 0, as shown in figure 2(a). Since h, varies continuously as 
e, decreases, the transition is of second order. 

(ii) If a > 2b, the first term in the right-hand side of (19) diverges when h,  4 0. 
The correcting term describes the behaviour when h, is larger as shown by the 
branch BC in figure 2(b): h, may have a sudden jump at e; when e, decreases, so 
the transition is of first order. Numerical calculation shows that the transition of the 
wetting state from complete (along axis el)  to partial (along branch BC) wetting b 
permitted only once when el moves leftward; no intermediate state (on branch AC) 
has minimum free energy, thus no thin-thick transitions occur in this case. Obviously, 
the ransition of second order happens at el = A, and that of first order takes place 
at e; < A, but its exact position should be determined by minimizing the free energy. 

In appendk B the free energy is calculated for the partial wetting state as ul/kBT 
and for the complete wetting as u2/kBT.  Equating them may give a relation between 
to and h,, which determines the existence condition for the first-order wetting tran- 
sition. We denote the values of e, and e2 at which the first-order wetting transition 
takes place by adding a prime. When h, is very small we have 

(20) 
t I - b / a  e; = (&,-el) . 

Because of the symmetry, the locus of the firstader wetting transition for h, < 0 can 
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also be obtained by the Same procedure. The separatrix for the first-order transition 
is shown in figure 3(a), where the right half-plane to the separatrix is the area of 
complete wetting, while the left half is of partial wetting. The separatrix is symmetric 
with respect to permutation of the two constituents of the fluid because the potcntial 
(8) itself is symmetric about axis ml. Figure 3(b) is a sketch of the phase diagram, 
where a first-order transition occupies the half-space a l b  > 2, and a continuous 
transition occurs when a / b  < 2. It is worth pointing out that the system will retum 
to Sullivan’s case itself if e, = 0 remains unchanged (the two components of the fluid 
have equal densities); the transition will thus always be continuous [2]. This indicates 
that the Sullivan model has a marginal version, and a very small deviation might lead 
to a lirst-order transition, just like that shown in figure 3(6). 

t e’ 

L \ R  
R 

L 
+ 
CI 

0 
A0 

I + CI 

0 
A0 

0 2 4 
Figure 3. (0) Separatrix of partial wetting (area L) and complete wetting (area R) 
in a two-phase coexistence state when a > 2b. (b) Phase diagram of a No-phase 
mexislence state. The tiststorder wansition occurs when a / b  > 2 and ez 0. while 
the secondirrder vansition taka place when a f b  < 2, or e2 = 0. 

From the discussion above, we h o w  that the order of the wetting transition at 
the two-phase coexistence boundary of a binary Sullivan fluid mixture depends mainly 
on the relative magnitude of the cuwatures along the two principal axes at peak A. 
Since both a and b are functions of A and B (parameters describing the fluid-fluid 
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potential defined in section I), the order of transition is controlled mainly by the 
interaction between h i d  molecules, and the substrate does not play an essential role. 
It  plays, however, a major role in determining whether the system is in a partial or 
complete wetting state. The substrate will play an important role in a more general 
system discussed in the next section where the RT is no longer along the symmetry 
axis for the dynamical potential. 

Dietrich and Schick [SI have studied the two-phase coexistence system near a 
wall via a sharpkink approximation within the framework of mean field theory for 
long-range force fluid. They showed that both first- and second-order transitions are 
possible and the prewetting line attaches to the first-order line tangentially in a phase 
space expanded by temperature, pressure and chemical potential. The results for the 
short-range force system presented here are qualitatively the same. 

3. Three-phase coexistence system 

This section is dedicated to the discussion of the three-phase coexistence system. In 
the parameter space (k, 1/A) the area for this case roughly corresponds to 

with some exceptions which are denoted as area V in [IO]. (For the exact boundaly, 
see [IO].) The three peaks of potential (8) indicate three phases 7, 6 and p in a 
coexistence state. Their locations are shown in figure 4. If the value of hf is suitably 
adjusted, the three peaks may have the Same height. The phase y has lower density 
with equal content of WO constituents and its representative peak is situated on axis 
m, with coordinates (ro,O). The phases 6 and p have higher density and their peaks 
are symmetrically situated at (6,, 6,) and (p,, pz)  with p1 = Sl and p2 = -4. The 
phase p is richer in one constituent and 6 richer in the other. In this section we shall 
study the wetting behaviour of phases 6 and y. We suppose that the wall favours 
the 6 phase and that the bulk is filled with y, so the RT deviates from axis m,, the 
symmetry axis of potential (8). 

The ET now takes the form 

m,(t)  = ao(l) t a , ( t )h ( t )  + az(i )hZ(t)  f'.' 

mz(i) = bo( i )  + h ( i )  (21) 

k ( t )  = b l ( t ) h ( t ) + b z ( t ) h 2 ( 1 ) + . . .  

where ( a o ( t ) , b 0 ( t ) )  represents the m. As in section 2, the expansion method can 
yield a set of differential equations to determine the Er. In the vicinity of the peak 6 
it is more convenient to introduce a principal-axes coordinate system via the following 
transformation: 
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n 7 Ai, ,111 

Figure 4. Location of lhree peaks of potential (8) in the case of three-phase mexistence. 

(gl, gz) plays the same role as ( m l ,  m z )  in section 2, 1) is a constant and s = 1. 
(In the case where one considers the peak p we put s = -1.) The analogues of 
equation (15) takes the form 

where rl, rz, ra and r4 are constants, a and p are principal curvatures of the 
potential at peak 6, and to  is the moment at which the particle passes through MO 
in figure 4. The two expansions (21) and (23) must be connected by joining the 
conditions at MO. The r coefficient can be expanded as 
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which are similar in form to equation (22). 
Appendix C gives the locus for the first-order wetting transition in the parameter 

space ( H , , H z )  

H ;  ( H ; ) - ( P - 2 @ ) / @ ,  (26) 

It is easy to see that the phase diagrams have different forms for Q > 2p and 
a < 2p. We must discuss them separately. It is proved in appendix C that rlrz and 
r3r4 have opposite signs. Their values can be obtained analytically when the details 
of peak 6 and the m a r e  h o w .  Here we assume that r,, > 0, rzl < 0, r3, < 0 ,  
r41 < 0, which is one of the possible sets of coefficients required by (a). Other 
choices will lead to a similar conclusion and will not be discussed here. 

Keeping H, unchanged we have from the fust expression of equation (24) 

We now discuss the order of the wetting transition for the two cases h, > 0 and 
h, < 0 respectively. 

(i) When h, > 0, equation (27) has only one choice: enia E H i  /[r2,( 1 + a )hO]  
which requires H I  < 0. With this solution, the second expression of (24) gives 

for 0 < @/a < 1, 0 < 1 - p / a  < 1; the coefficients of the two terms of the above 
expression are all negative. The system should be in a complete wetting state when 
h, -+ 0. As Hz decreases from positive to negative, a second-order transition may 
occur at H, = 0. 

(ii) When h, < 0, equation (27) takes one of two forms: 

so only Hi  > 0 is possible. With these two roots we get from (24) that 

and 

(29) 

In the following we consider the wetting behaviour for a > 2p and a < 2p sepa- 
rately. 
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Figure 5. A iirst-order transition a r u m  at Hz = Hi when 01 < 2p. 

b 
E, U 

2nd P 
Figure 6. Phase diagram of a three-phase coexistence system when 01 < Zp, where 
area C indicates the complete-wetting region and P indicates the panial-wetling region, 
'1st' (thin tine) represents a Fust-order Uansition and 2nd' (wide line) represents a 
second-order transition. 

(i) men a < 20, we have p / a  > 1 - p / a ,  so H$') - - r 4 , ( - h a ) t - f l / e .  
However, HP) is h e a r  in ( - { b o ) ;  hence, as shown in figure 5 there is a first-order 
transition when H, decreases through a value of H;. Combining the results for 
H, < 0 above and the separatrix equation (26), we then obtain the phase diagram 
in a dynamical picture as shown in figure 6. 

(ii) When a > 2p, we have @/a < 1 - p/u .  If H, is wry large, H, varies with 
ha as shown in figure 7, and there is a first-order transition. If, on the other hand, H, 
is very small, the dependence of H2 on ha might be different, as shown in figure 8, 
and a second-order Uansition may occur. For intermediate values of H I ,  numerical 
calculations show that there may be the behaviour shown in figure 9 besides a 
second-order transition at the origin, there may also be a 'thin-thick transition' [4], 
which reveals a finite jump in thickness of the wetting film from h?) to h r ) .  Their 
corresponding free energies are equal; the minimum of free energy is changed from 
branch A 0  to branch BC when H, decreases as shown in figure 9. Summarizing all 
cases for H, above we can give a dynamical description for the phase diagram when 
a > 2p  as shown in figure 10, where only a segment of large H ,  can be determined 
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t 

Rgurc 7. A first-order transition cccun at H2 = H: when a > 2 p  and HZ is m y  
large. 

t h' 

Figure 8 A second-order transition w u r s  at Hz = 0 when cr > Z @  and HI  is ve'y 
small. 

analytically; for other parts numerical work is necessary. 

All !he studies above were performed with constant H, and varying H,.  The 
alternative situation will also lead to the same results; we omit the repeated discussion 
here. 

The study reveals that the wetting properties depend not only on the interaction 
between fluid molecules (which is reflected by the dependence on OL and p) but 
also on the interaction between molecules of the Ruid and the substrate (which is 
reflected by the dependence on H, and H?); this is different from that of the hvo- 
phase coexistence system. 

Hauge once studied the wetting behaviour of a binary system with a three-phase 
coexistence state using Landau theory [9]. The dynamical potential he discussed is 
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Figure 9. A ‘thin-lhick’ lransition lakes place at H2 = H; when m > 2i3 and H1 has 
an intermediate value. In the decreasing of H2 from p i l i v e  to negative, a second-order 
transition occups a1 origin 0 and Collows a sudden jump of layer lhickness at HL from 
kf) to k?). 

t 

2nd 

Figure 10. Phase diagram of a three-phase mwtistence syslem when oi > 20, where 
BR b the thin-thick‘ transition line. The symbols C P, ‘1st’ and ‘2nd’ have lhe Same 
meaning as in iigure 6. 

similar to the one that we studied here as in figure 4. His conclusion is in agreement 
with the present paper. However, the thin-thick transition revealed in the present 
study was not found in his Landau mean field theory discussion. 

4. Discussion 

Our technique i valid only when expansion parameter h is small enough, so our 
results are valid only in a small area in the phase diagram of figures 3 and 10, which 
requires that the wall force should not be too large, and the initial condition curve L 
determined by equations (9) and (13) for a given point E ( e , ,  e,) should be located 
near the peak X (see figure 1). If the point E ( e ,  , e*) moves away from peak A, and 
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the value of h, is no longer small, the m may deviate substantially from the rzr and 
the trajectory expansion method is not then valid; some numerical work is required. 

For the sake of concreteness, we suppose in section 2 that phase X is adsorbed on 
a flat wall and phase y is in the bulk, so the particle will move from peak X to y; the 
opposite case is also true if the RT is directed from peak y to peak A-the treatment 
is quite similar to that in section 2. In section 3 we can also investigate other cases, 
such as that in which the phase 6 is filled in the bulk and the wall favours phase y, so 
long as we reverse the direction of the rzr. The wetting transition for the coexistence 
state of phases 6 and p can be treated by our approach too; we need only exchange 
ml and m, in equation (21). The study procedure is almost the same. 

The fact that the thin-thick transition occurs in a ‘fairly short-range’ force system 
and that it precedes a critical weaing transition has been revealed in some other 
systems (see [12] and references therein). Our phase diagram in figure 10 is quite 
similar to some parts of the phase diagram of the simple fluid [12]. 
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Appendix A 

The dominating term of h, is b , ( t ) h ( t ) ;  here b l ( t )  is determined by (14d) and 

Since (1 - k)/2 < 1/A in area 11 [lo], U,, < 0, and, as a, reduces monotonically 
with 1, so does U,,, but its absolute value increases; we rewrite (14d) as 

b* = IUoz(ao)l- b:. 

When t -+ +CO, k ,  -+ 0, so bf(oo) = ~U,2(y,)~. Now the PT cannot arrive at peak y 
unless m2(t )  has opposite sign to h2(t). So b, ( t )  < 0 and 6,(o;i) = - ~ ~ U O 2 ( ~ , ) ~ ,  
which shows that the solution we wanted is the non-stable one, and initial values are 
confined in the range 

- JkIoZ(y0II < b,(to) < - JEZZX. 
Hence b ( t )  decreases monotonically after to. From (146) we get 

It can be proved in the present model that 



The wetting transition in binary Sullivan puid &tures 

and only u, ( t  -+ +M) = 0 can give i , ( t  -+ +CO) = 0, so a l  2 0. 

Thus (14c) becomes 

6203 

Hence (14e) becomes b2 + 3b1b2 = 0, and similar arguments show that b, 0. 

iL2 + (261 t Uio/iLo)a2 = -(b? t u 0 2 ) / 2 4  

or, using (14d), 

iL2 + (2b ,  + Ul,/i t ,)a,  = b1/2iL0. 

Since 

2b1 + Ulo/ao < 0 b1/2it, = adb,/dao > 0 
then 

Thus (Al) becomes 

iL2 = -(2b, t U1,/iL,)[a2 - F ( t ) ] .  

XJ ensure iL2(t + +CO) = 0 there must be u,(t --t +M) = F(m). When a2 > F, 
iL2 > 0; but when u2 < F, iL2 < 0, a,(t,) must be carefully chosen in order to avoid 
divergence. It is clear that 

F( t0 )  < 4 t d  < 0 
is appropriate. From the discussion above, we can get the behaviour of the ET at 
t > to. 

From (15) combined with conditions (16), the coefficients can be determined as 

C, = ( 1 / 2 b ) ( b -  by)hoebtO 

C, = (1 /2B) (b+ bY)hoe-”O 

where h ,  = h ( t o ) ;  the superscript 0 indicates the quantity at t = to. 
Near peak A,  

U,, = - T U  1 2  (ao  - A,) 

a; - A, - u ; / u  = 0 

lJo2=-b2. 

Thus 

a; - A, t a; /u  = 2 ( a ;  - A,) 
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and 

i.e. (by)' > b2. From ( l k ) ,  

Hence 

bz - bZ 
+ a 2 .  4 + 2 a z b ,  = 

a 2az (ao  - A,) 

When t = to,  the expression above = 2yo + az a z  where 

Tbus the complete solution of equation (15) is obtained. 

Appendix B 

Tbe Gee energy (11) can be rewritten as 

Using (15) (neglecting the higher orders of ho), we can get lit: + lit;; the last term 
of (Bl) is: 

The first term can be written as 

where So is the contribution of the RT. Thus we get the free energy of partial wetting 
in the form 

u l / k B T  = So - (et + e:) + $ a ( l  + a ) e 2 " ' o p h ~  - i a ( 1  - a ) ( a :  -*A0)2e-Zat~ 

+(1/86)(1 + b ) ( b - b ~ ) z e 2 b ' o h ~ - ( l / 8 b ) ( l - b ) ( b + b ~ ) z e ~ z b t o  

+ ( G - ~ a p 2 + $ b ~ ) h ~ + O ( h ~ )  
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where 

is the pT's major contribution to the free energy. 
The free energy of complete wetting comprises two parts: one is from a trajectory 

that starts at point R near peak X and ends at X as shown in figure 1, which can be 
denoted as o ; / b T ;  the other part is So, the contribution of the RT. The first part 
can be calculated using 

ml = A, + Cle-'* m2 = C2e-" 

where 

e2 c, = - l t b '  
e1 - Xo c, = - 
1- l -a 

Inserting these into expressions (11) yields 

so 

Equating the free energies for the two wetting states immediately gives (20). 

Appendix C 

Equations (22) transform the potential expansion 

U(ml,m2) = -$a2(m1 - 6,)'+ sc2 (ml  - 6,)(m, - h2) - $b2(m2 - 6,)' 

into 
- 

1 2 2  1 2 2  U(g1,gz) = -+ 91 - Z P  9 2  

where 
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It can easily be proved that p < Q < 1. So the IT takes the form 

g1(t) = Clea' + c,e-=' g z ( t )  = C3ePt + C4e+'. 

The joining conditions give the coeficienu as 

C, = rleet0 

where 

r I =1( - 91 0 + 8 / a )  = [-(;? - 61 t~hy/cy) - sfi(m: - 6, + 7$/a)] 

I-2 = i (sy  - gy/a) = [ f i ( m :  - 6 ,  - f iy/a) - s&(mg - 6, - h ~ / c y ) ]  

C, = rzee"o c3 = r3e-@z0 c 4 - - r 4= @ t o  

.- 

r3 +(g: + ~ P / P )  = [s,mm: - 6, + * Y I P )  + JIT;;(~; - 6, + m;ip) ]  

r 4 = L (  - , 91 0 - 8 / p )  = 4 [sfi(m: - 6, - h y / P )  + f i ( k :  - S2 - hi/@)] . 
Here the superscript 0 still indicates values at the moment to. Using (21), we get the 
expansion coefficients of r, such as 

rlo = [ f i ( a :  - SI + u:/a) - sfi(i: - 6, + @/a)] 
rzo = f [=(.E z-6, - ;.:/a) - sfi($- i, 

rll = 4 { f i l a :  +~(i~t + ayb; ) /a ]  - s f i ( i~+  b t / a ) }  

rzl = ~ { ~ [ a ~ - ( i L : f a ~ b ~ ) / a ] - s 6 . \ / i j ( l - 6 b O O / C Y ) } .  

The ET should coincide with the RT when h,  -+ 0, which requires 

rzo = o 

glo(t) = r 10 e"('-'o) gzo( t )  = r30e@(f-fO). (C1) 

azr,r2 + p2r3r4 = o 

r40 = 0 .  

Putting ho = 0, we get the behaviour of the LT at t < t o :  

In the principal-axes coordinates (9, , sa ) ,  the first integral (13) at t = to gives 

(C2) 

which requires that rlrz has the opposite sign to r3r4. 
The free energy for partial wetting can be rewritten as 

k, T = - (e :+e i )+  ~ [ g ~ ( 0 ) + g ~ ( O ) ] + ~ t n ( g ~ t g ~ ) d t + ~ ~ ( ~ ~ + h ~ ) d t .  0 
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The last term can be written as 

So - Si + Jho + O(h i )  

where 

J-m 

is the contribution from the m, 

is the contribution of the ~ r ,  and 
m 

J h ,  = 2 1 0  [&,(Ul + a,b,) + b,b,]hdt 

is the major pan of the ET'S contribution to the free energy. 

a , / k B T  = So - (et  + e;)  - hacl - or)l?:e-2a'o + i a ( l  + a)I':eZcr'O 

Using (Cl) in S,, we have 

- $ ( I -  PVae 2 - 2 D o  + + p)r;,2@0 

+ ar,,r,, + ~ r ~ ~ r ~ ~  + ~ h ,  + o(G). 

The free energy for complete wetting can similarly be calculated, as in section 3 

Equating U ,  and n2, we get the condition at the transition point 

Here the superscript ' denotes quantities in the transition point and 

J *  J + Qrlo(rll - rZl)  + Pr30(r31 - r41). 
Obviously (c3) requires that hb and J' have the Same sign. 

Inserting (C3) into (24) gives 

H ;  = r l o ( l  - C Y ) I i  + ( ~ ~ / J * ) r , ~ r ~ ~ ] e - ~ ~ ~  

H ;  = rsa(i - P)II + (P/J*)r30r411e-B*b 

4- [P(1 - P)/J*(1+ P)lr21GO(1+ a l e  (a-28Pb 

t lCY(1  CY)/^*(^ + CY)]r41r:o(~ + ~ ) d @ - ~ ~ ) * 4  
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Rr large tb, we have HI U H; - Cancelling tb yields (26). 

References 

111 Dietrich S 1988 Phme Tronrilionr mid Critical Phaimncno vol 12, ed C Domb and J L Lebavilz .. 
(London: Academic) pp 1-218 

I21 Sullivan D E 1979 FWs. Reu B 20 3991: 1982 Phys Rex A 25 1669 
i3i Ding E J and HaugeE H 1987 PhysLca'l43A 54- 
141 Aukrust T and Hauge E H 1987 Physic0 14lA 427 
[5] Piasecki J and Hauge E H 1987 Physic0 143A 87 
161 Ding E J 1991 1 Phys: Cmdm. Muftn 3 1197 
[q =lo da Gama M M and Evans R 1983 Mol Phys 48 687 
[E] Dietrich S and Schick M 1986 Php Reu B 33 4952 
(91 h u g e  E H 1986 Phys Ra: B 33 3322 

[IO] Ding E J and Hauge E H 1989 Physicu 155A 189 
Ill] Hemmer P C and Lebawitz J L 1976 P h m  Trmilianr rmd oiricnl Phenoineno VOI SB, ed C Domb 

[12] Langie G and lndekeu J 0 1991 1 Phys.: Gmdsrr Moun 3 9797 
and M S Green (Iondon: Academic) 


